Evidence for sugar signalling in the regulation of asparagine synthetase gene expressed in Phaseolus vulgaris roots and nodules.
نویسندگان
چکیده
A cDNA clone, designated as PvNAS2, encoding asparagine amidotransferase (asparagine synthetase) was isolated from nodule tissue of common bean (Phaseolus vulgaris cv. Negro Jamapa). Southern blot analysis indicated that asparagine synthetase in bean is encoded by a small gene family. Northern analysis of RNAs from various plant organs demonstrated that PvNAS2 is highly expressed in roots, followed by nodules in which it is mainly induced during the early days of nitrogen fixation. Investigations with the PvNAS2 promoter gusA fusion revealed that the expression of PvNAS2 in roots is confined to vascular bundles and meristematic tissues, while in root nodules its expression is solely localized to vascular traces and outer cortical cells encompassing the central nitrogen-fixing zone, but never detected in either infected or non-infected cells located in the central region of the nodule. PvNAS2 is down-regulated when carbon availability is reduced in nodules, and the addition of sugars to the plants, mainly glucose, boosted its induction, leading to the increased asparagine production. In contrast to PvNAS2 expression and the concomitant asparagine synthesis, glucose supplement resulted in the reduction of ureide content in nodules. Studies with glucose analogues as well as hexokinase inhibitors suggested a role for hexokinase in the sugar-sensing mechanism that regulates PvNAS2 expression in roots. In light of the above results, it is proposed that, in bean, low carbon availability in nodules prompts the down-regulation of the asparagine synthetase enzyme and concomitantly asparagine production. Thereby a favourable environment is created for the efficient transfer of the amido group of glutamine for the synthesis of purines, and then ureide generation.
منابع مشابه
Two glutamine synthetase genes from Phaseolus vulgaris L. display contrasting developmental and spatial patterns of expression in transgenic Lotus corniculatus plants.
The gln-gamma gene, which specifies the gamma subunit of glutamine synthetase in Phaseolus vulgaris L., has been isolated and the regulatory properties of its promoter region analyzed in transgenic Lotus corniculatus plants. A 2-kilobase fragment from the 5'-flanking region of gln-gamma conferred a strongly nodule-enhanced pattern of expression on the beta-glucuronidase reporter gene. Parallel ...
متن کاملImmunocytochemical Localization of Glutamine Synthetase in Organs of Phaseolus vulgaris L.
Glutamine synthetase was localized in nodules, roots, stems, and leaves of red kidney bean (Phaseolus vulgaris L.) by immunocytochemistry. Affinity purified antibodies reactive with glutamine synthetase were prepared using purified nodule-enhanced glutamine synthetase. Immunogold labeling was observed in the cell cytoplasm in each plant organ. In nodules, the labeling was more intense in the in...
متن کاملHeterogeneity of Glutamine Synthetase Polypeptides in Phaseolus vulgaris L.
Glutamine synthetases from roots, nodules, and leaves of Phaseolus vulgaris L. have been purified to homogeneity and their polypeptide composition determined.The leaf enzyme is composed of six polypeptides. The cytosolic fraction contains two 43,000 dalton polypeptides and the chloroplastic enzyme is formed by four 45,000 dalton polypeptides. Root glutamine synthetase consists only of the same ...
متن کاملMolecular cloning of the cDNA encoding aspartate aminotransferase from bean root nodules and determination of its role in nodule nitrogen metabolism.
A cDNA clone encoding aspartate aminotransferase (PVAAT-2) (EC 2.6.1.1) was isolated from the common bean Phaseolus vulgaris nodule cDNA library. The nucleotide sequence analysis of the full-length cDNA allowed its identification by comparison with sequence databases. The amino acid sequence of the bean PvAAT-2 showed high similarity with the AAT-2 isoforms described in other leguminous plants....
متن کاملMetabolomics and Transcriptomics Identify Multiple Downstream Targets of Paraburkholderia phymatum σ54 During Symbiosis with Phaseolus vulgaris.
RpoN (or σ54) is the key sigma factor for the regulation of transcription of nitrogen fixation genes in diazotrophic bacteria, which include α- and β-rhizobia. Our previous studies showed that an rpoN mutant of the β-rhizobial strain Paraburkholderia phymatum STM815T formed root nodules on Phaseolus vulgaris cv. Negro jamapa, which were unable to reduce atmospheric nitrogen into ammonia. In an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 59 6 شماره
صفحات -
تاریخ انتشار 2008